金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

【什么是克莱因瓶-图】百科知识点

来源:学大教育     时间:2017-12-08 09:45:51


数学涵盖了很多知识面,在学习数学的过程大家需要掌握很多知识点,提前了解这些知识点对大家学好数学是很有帮助的,为此下面学大教育为大家带来【什么是克莱因瓶-图】百科知识点,希望大家能够记忆好这些知识点。

【什么是克莱因瓶-图】百科知识点

命名来源

“克莱因瓶”这个名字的翻译其实是有些错误的,因为最初用德语命名时候名字中“Kleinsche Fläche”是“克莱因平面”的意思。因为翻译问题写成了Flasche,这个词才是瓶子的意思。不过不要紧,“瓶子”这个词用起来也非常合适。

在1882年,著名数学家菲利克斯·克莱因(Felix Klein)发现了后来以他的名字命名的著名“瓶子”。这是一个像球面那样封闭的(也就是说没有边)曲面,但是它却只有一个面。在图片上我们看到,克莱因瓶的确就像是一个瓶子。但是它没有瓶底,它的瓶颈被拉长,然后似乎是穿过了瓶壁,最后瓶颈和瓶底圈连在了一起。如果瓶颈不穿过瓶壁而从另一边和瓶底圈相连的话,我们就会得到一个轮胎面(即环面)。

描述

克莱因瓶是一个不可定向的二维紧流形,而球面或轮胎面是可定向的二维紧流形。如果观察克莱因瓶,有一点似乎令人困惑--克莱因瓶的瓶颈和瓶身是相交的,换句话说,瓶颈上的某些点和瓶壁上的某些点占据了三维空间中的同一个位置。

我们可以把克莱因瓶放在四维空间中理解:克莱因瓶是一个在四维空间中才可能真正表现出来的曲面。如果我们一定要把它表现在我们生活的三维空间中,我们只好将就点,把它表现得似乎是自己和自己相交一样。克莱因瓶的瓶颈是穿过了第四维空间再和瓶底圈连起来的,并不穿过瓶壁。用扭结来打比方,如果把它看作平面上的曲线的话,那么它似乎自身相交,再一看似乎又断成了三截。但其实很容易明白,这个图形其实是三维空间中的曲线。它并不和自己相交,而是连续不断的一条曲线。在平面上一条曲线自然做不到这样,但是如果有第三维的话,它就可以穿过第三维来避开和自己相交。只是因为我们要把它画在二维平面上时,只好将就一点,把它画成相交或者断裂了的样子。克莱因瓶也一样,我们可以把它理解成处于四维空间中的曲面。在我们这个三维空间中,即使是最高明的能工巧匠,也不得不把它做成自身相交的模样;就好像最高明的画家,在纸上画扭结的时候也不得不把它们画成自身相交的模样。有趣的是,如果把克莱因瓶沿着它的对称线切下去,竟会得到两个莫比乌斯环。

如果莫比乌斯带能够完美的展现一个“二维空间中一维可无限扩展之空间模型”的话,克莱因瓶只能作为展现一个“三维空间中二维可无限扩展之空间模型”的参考。因为在制作莫比乌斯带的过程中,我们要对纸带进行180°翻转再首尾相连,这就是一个三维空间下的操作。理想的“三维空间中二维可无限扩展之空间模型”应该是在二维面中,朝任意方向前进都可以回到原点的模型,而克莱因瓶虽然在二维面上可以向任意方向无限前进。但是只有在两个特定的方向上才会回到原点,并且只有在其中一个方向上,回到原点之前会经过一个“逆向原点”,真正理想的“三维空间中二维可无限扩展之空间模型”也应该是在二维面上朝任何方向前进,都会先经过一次“逆向原点”,再回到原点。而制作这个模型,则需要在四维空间上对三维模型进行扭曲。数学中有一个重要分支叫“拓扑学”,主要是研究几何图形连续改变形状时的一些特征和规律的,克莱因瓶和莫比乌斯带变成了拓扑学中最有趣的问题之一。莫比乌斯带的概念被广泛地应用到了建筑,艺术,工业生产中。

以上就是学大教育网为大家带来的【什么是克莱因瓶-图】百科知识点,希望大家能够多掌握与数学学习相关的百科知识,这样才对以后的数学学习有所帮助。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956